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Published Online: 6 Feb 2004 – c© Società Italiana di Fisica / Springer-Verlag 2004

Abstract. The density of nuclear matter in the interior of neutron stars can reach values, for the largest
masses, which can be compatible with the onset of hadron deconfinement. For the study of this possibility
the only viable method at present is the comparison between the available nucleon and quark Equations of
State (EoS) at increasing baryon density. It is then possible to trace the transition to the deconfined phase
or the appearence of a mixed phase. We present recent results on the structure of neutron stars based
on this procedure. For the nucleon matter, the microscopic many-body theory of the Nuclear Equation of
State is discussed in the framework of the Bethe-Brueckner-Goldstone method. The expansion is extended
up to the three hole-line diagrams contribution. For the quark matter, different models are used to generate
the quark EoS. Despite the maximum mass of neutron stars turns out to be only marginally sensitive to
the considered quark EoS, it is found that the structure of neutron stars can drastically depend on the
adopted model.

PACS. 21.65+f Nuclear matter – 97.60,JD Neutron Stars – 26.60+c Nuclear aspects of Neutron Stars –
24.10,Cn Many-body

1 Introduction

From a hystorical point of view, the nuclear saturation
problem was the main motivation for the extensive stud-
ies, which have lasted for few decades, on infinite nuclear
matter, since it is one of the fundamental problems in nu-
clear physics. However, infinite nuclear matter cannot be
considered only an idealized system, since it is commonly
believed that macroscopic portions of (asymmetric) nu-
clear matter form the interior bulk part of neutron stars
(NS), usually associated with pulsars. The internal struc-
ture of NS is therefore directly linked to the Equation of
State (EoS) of infinite nuclear matter. An accurate pre-
diction of the EOS is highly demanded for most studies
of neutron stars and related astrophysical applications. Of
course, only indirect observations of NS structure are pos-
sible. However, the astrophysics of neutron stars is rapidly
developing, in view of the observations coming from the
new generation of artificial satellites, and one can expect
that it will be possible in the near future to confront the
theoretical predictions with more and more stringent phe-
nomenological data.

At the hadronic level, several many-body theories and
techniques have been developed and applied to the study
of the nuclear Equation of State. The main difficulty in the
many-body theory of nuclear matter is the treatment of
the strong repulsive core, which dominates the short range
behaviour of the nucleon-nucleon (NN) interaction. Sim-
ple perturbation theory cannot of course be applied, since
the matrix elements of the interaction are too large. One
way of overcoming this difficulty is to introduce the two-

body scattering G-matrix, which has a much smoother
behaviour even for large repulsive core. It is possible to
rearrange the perturbation expansion in terms of the re-
action G-matrix, in place of the original bare NN interac-
tion, and this procedure is systematically exploited in the
Bethe-Brueckner-Goldstone (BBG) expansion [1].

For quark matter, no calculation is available at the
high baryon density which is encountered in neutron star
interior. For the same reason, no theory, based on QCD, is
available to describe the possible transition form hadron
matter to the deconfined quark matter. At present, the
only viable method to explore the possible appearence of
the deconfined phase in tne core of neutron stars is the
use of a well defined model for the quark-gluon plasma
and the comparison of the corresponding EoS with the
hadronic one to assess the possible phase transition (in-
cluding eventually a mixed phase). In Sect. 2 we describe
the hadronic EoS and its properties at increasing density.
In Sect. 3 we confront this EoS with the quark EoS ob-
tained within few models, and we extract the NS structure
for each adopted quark matter model. It turns out that,
while the maximum NS mass is only slightly dependent
on the quark matter model, the NS structure is strongly
dependent on it.

2 The BBG expansion and the nuclear EOS

The BBG expansion for the ground state energy at a given
density, i.e. the EOS at zero temperature, can be ordered
according to the number of independent hole-lines appear-
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ing in the diagrams representing the different terms of the
expansion. This grouping of diagrams generates the so-
called hole-line expansion [2]. The diagrams with a given
number n of hole-lines are expected to describe the main
contribution to the n-particle correlations in the system.
At the two hole-line level of approximation the corre-
sponding summation of diagrams produces the Brueckner-
Hartree-Fock (BHF) approximation, which incorporates
the two particle correlations. The BHF approximation in-
cludes the self-consistent procedure of determining the sin-
gle particle auxiliary potential, which is an essential in-
gredient of the method. Once the auxiliary self-consistent
potential is introduced, the expansion is implemented by
introducing the set of diagrams which include “potential
insertions”. To be specific, the introduction of the auxil-
iary potential can be formally performed by splitting the
hamiltonian in a modified way from the usual one

H = T + V = T + U + (V − U) ≡ H ′
0 + V ′ (1)

where T is the kinetic energy and V the nucleon-nucleon
interaction. Then one consider V ′ = V − U as the new
interaction potential and H ′

0 as the new single particle
hamiltonian. Then, the single particle energy e(k) is given
by

e(k) =
�

2k2

2m
+ U(k) (2)

while U must be chosen in such a way that the new in-
teraction V ′ is, in some sense, “reduced” with respect to
the original one V , so that the expansion in V ′ should be
faster converging. The introduction of the auxiliary poten-
tial turns out to be essential, otherwise the hole-expansion
would be badly diverging. The total energy E can then be
written as

E =
∑

k

e(k) + B (3)

where B is the interaction energy due to V ′. The BHF
sums the so called “ladder diagrams”. The summation of
these diagrams can be performed by solving the integral
equation for the Brueckner G-matrix

〈k|1k2|G(ω)|k3k4|〉= 〈k|1k2|v|k3k4| 〉+

+
∑

k′
3k′

4
〈k|1k2|v|k′

3k
′
4|〉(

1−ΘF (k′
3))(1−ΘF (k′

4))
ω−ek′

3
−ek′

4

·

〈k|′3k′
4|G(ω)|k3k4| 〉

(4)

where ΘF (k) = 1 for k < kF and is zero otherwise, be-
ing kF the Fermi momentum. The product Q(k, k′) =
(1 − ΘF (k))(1 − ΘF (k′)), appearing in the kernel of (4),
enforces the scattered momenta to lie outside the Fermi
sphere, and it is commonly referred as the “Pauli opera-
tor”. This G-matrix can be viewed as the in-medium scat-
tering matrix between two nucleons. The self-consistent
single particle potential U(k) is determined by the equa-
tion

U(k) =
∑

k′<kF

〈k|k′|G(ek1 + ek2)|kk′|〉A (5)

with |kk′|〉A = |kk′|−〉|kk′|〉.

The first potential insertion diagram cancels out the po-
tential part of the single particle energy of (2), in the ex-
pression for the total energy E. This is actually true for
any definition of the auxiliary potential U . At the two
hole-line level of approximation, one therefore gets

E =
∑

k<kF

�
2k2

2m + 1
2

∑
k,k′<kF

〈k|k′|G(ek + ek′)|kk′|〉A

≡ ∑
k<kF

�
2k2

2m + 1
2

∑
k<kF

U(k)
(6)

The result that only the unperturbed kinetic energy ap-
pears in the expression for E, and all the correlations are
included in the potential energy part, holds true to all
orders and it is a peculiarity of the BBG expansion. Of
course, the modification of the momentum distribution,
and therefore of the kinetic energy, is included in the in-
teraction energy part, but it is treated on the same footing
as the other correlation effects. This seems to present a no-
ticeable advantage. In fact, the modification of the kinetic
energy in itself is quite large and, of course, positive and
should be therefore compensated by an extremely accu-
rate calculations of the (negative) correlation energy. On
the other hand, putting the two effects on the same foot-
ing, one can expect that strong cancellation occur order
by order.

The BHF results indicate that already the two hole-
line approximation is able to produce reasonable values for
the saturation point. The remaining discrepancies can be
summarized in the celebrated Coester band [3], the line
along which the results for different “realistic” nucleon-
nucleon forces appear to be approximately concentrated
and which misses the phenomenological saturation point.
According to the force used, either the saturation density
is too high or the binding energy is too small. However,
the results depend on the very definition of the single par-
ticle potential. The “standard” choice for U(k) assumes
that the potential is zero above the Fermi momentum kF ,
while in the “continuous choice” [4] the definition of (5) is
extended to momenta k larger than kF , thus making U a
continuous function through the Fermi surface. The final
result of a hypothetically exact BBG calculation is inde-
pendent of the auxiliary potential U(k), but the rate of
convergence can of course depend on the particular choice
adopted. Therefore, the degree of dependence of the re-
sults on the choice of the potential can be considered an
indication of the degree of convergence obtained at a given
level of the BBG expansion. The results for both choices
of U(k) at the BHF level of approximation (Argonne v18
potential [5]) is reported in Fig. 1 in the case of sym-
metric nuclear matter (solid lines). As one can see, the
saturation curves are different for the two prescriptions.
It has to be noticed, however, that the apparent discrep-
ancy of 4-5 MeV in the binding energies shown in Fig. 1, is
about 10% of the calculated potential energy per particle,
which is about -40 MeV around saturation. This is the
degree of convergence obtained at the Brueckner level. In
view of these results, obtained within the BHF approxi-
mations, it appears mandatory to consider the three hole-
line diagrams. The value of their contribution can indeed
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Fig. 1. Nuclear matter saturation curve for the Argonne v18

NN potential. The solid lines indicate the results at the Brueck-
ner (two hole-lines) level for the standard (BHF-G) and the
continuous choices (BHF-C) respectively. The results obtained
adding the three hole-line contribution are given by the open
squares (standard choice) and the open circles (continuous
choice)

provide a check of convergence and possibly an accurate
EOS. According to the BBG expansion, this set of dia-
grams describes the irreducible three-nucleon correlations,
i.e. the three-body correlations which cannot be reduced
to a product of two-body correlations, already introduced
at the BHF level. Since the two hole-line contribution has
been summed up by introducing the G-matrix, the in-
medium two-body scattering matrix, it is conceivable that
the three hole-line diagrams can be summed up by intro-
ducing some similar generalization of the scattering ma-
trix for three particles. The three-body scattering problem
has a long history by itself, and has been given a formal
solution by Fadeev [6]. For identical particles the original
three integral Fadeev equations reduce to one, because of
symmetry. The analogous equation and scattering matrix
in the case of nuclear matter (or other many-body systems
in general) has been introduced by Bethe [7]. The integral
equation, the Bethe–Fadeev equation, reads schematically

〈k|1k2k3|T (3)|k′
1k

′
2k

′
3| 〉 = 〈k|1k2|G|k′

1k
′
2|δ〉K(k3 − k′

3) +

+ 〈k|1k2k3|G12 X Q3
e T (3)|k′

1k
′
2k

′
3| 〉 .

(7)
As one can see, the kernel contains the two-body scatter-
ing matrix G in place of the bare NN interaction, in line
with the BBG scheme. The factor Q3/e is the analogous
of the similar factor appearing in the integral equation
for the two-body scattering matrix G, see (4). Therefore,
the projection operator Q3 imposes that all the three par-
ticle states lie above the Fermi energy, and the denom-
inator e is the appropriate energy denominator, namely
the energy of the three-particle intermediate state minus
the entry energy ω, in close analogy with the equation for
the two-body scattering matrix G of (4). The real novelty

T
���

� � � �

k� k� k�

� � � � � � � � �

Fig. 2. The first few terms in the expansion of the Bethe-
Fadeev integral equation
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Fig. 3. Schematic representation of the direct a and exchange
b three hole-line diagrams

with respect to the two-body case is the operator X. This
operator interchanges particle 3 with particle 1 and with
particle 2, X = P123 + P132, where P indicates the opera-
tion of cyclic permutation of its indices. It gives rise to the
so-called “endemic factor” in the Fadeev equations, since
it is an unavoidable complication intrinsic to the three-
body problem in general. The reason for the appearance
of the operator X in this context is that no two succes-
sive G matrices can be present in the same pair of particle
lines, since the G matrix already sums up all the two-body
ladder processes. In other words, the G matrices must al-
ternate from one pair of particle lines to another, in all
possible ways, as it is indeed apparent from the expansion
by iteration of (7), which is represented in Fig. 2. Adding
all terms with an arbitrary number of G-matrices, one
gets a generalized ladder series for three-particles, analo-
gous to the ladder series introduced for the two particles
case in defining the G-matrix. Indeed, this is the basis for
the integral (7). The introduction of the three-body scat-
tering matrix T (3) allows to sum up the three hole-line
diagrams, as schematically indicated in Fig. 3. Here the
diagrams have been divided into two distinct groups, the
directs ones (a) and the exchange ones (b).
Once the first interaction has occurred, the remaining part
of the diagram describes the rescattering, in all possible
way, of three particle-lines, since no further hole-line must
be present in the diagram. This part of the diagram is
indeed the three-body scattering matrix T (3), and the op-
erator Q3 in (7) assures, as already mentioned, that only
particle lines are included. The set of diagrams indicated
in part (b) can be obtained by the ones of part (a) by sim-
ply interchanging the final (or initial) point of one of the
“undisturbed” hole-line with the final (or initial) point of
the third hole-line. This means that one can obtain each
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graph of the group depicted in Fig. 3b by acting with
the operator X on the bottom of the corresponding graph
of Fig. 3a. Once the Bethe-Fadeev equations are solved,
the contribution of the direct three hole-line diagrams of
Fig. 3a can be written as

Edir
3h = 1

2

∑
k1,k2,k3≤kF

∑
{k′},{k′′}≥kF

〈k|1k2|G|k′
1k

′
2|〉A·

· 1e 〈k|′1k′
2k

′
3|XT (3)X|k′′

1k′′
2k′′

3 | 〉 1
e′ 〈k|′′1k′′

2 |G|k1k2|〉A ,

(8)

In (8) the denominator e = ek′
1

+ ek′
2

− ek1 − ek2 , and
analogously e′ = ek′′

1
+ ek′′

2
− ek1 − ek2 . The exchange

diagrams of Fig. 3b can be obtained by multiplying the
same expression by a further factor X. In summary, the
entire set of three hole-line diagrams can be obtained by
multiplying the expression of (8) by 1+X. A scheme of ap-
proximation was first devised by B.D. Day [8] within the
gap choice for the single particle potential. In this scheme
the first diagram in each one of the series (a) and (b) in
Fig. 3, the so-called “bubble” and “ring” diagrams, are
singled out from the whole set of three hole-line diagrams,
while the remaining series of diagrams is summed up by
solving the Bethe-Fadeev integral equation. This proce-
dure turns out to be numerically convenient. We have
checked [9] and extended these calculations to the con-
tinuous choice for the single particle potential. In the lat-
ter case a potential insertion diagram has to be added at
the three hole-line level of approximation [1,9]. The final
equation of State obtained by adding the three hole-line
contribution is reported in Fig. 1, both for the gap choice
(squares) and the continuous choice (stars) [10], again for
the Argonne v18 potential. Two conclusions can be drawn
from these results. i) The two saturation curves in the gap
and continuous choices, with the inclusion of the three
hole-line diagrams, tend now to collapse in a single EOS,
with some deviations only at the highest density. This is
a strong indication that a high degree of convergence has
been reached at this level of the expansion, according to
the criterion discussed above. Notice that the saturation
curves extend from a density which is about one half of
saturation density to about five times saturation density,
and, therefore, it appears unlikely that the agreement be-
tween the two choices can be considered as a fortuitous
coincidence. ii) The Brueckner two hole-line EOS within
the continuous choice turns out to be already close to the
full EOS, since in this case the three hole-line contribu-
tion is quite small. In first approximation one can adopt
the BHF results with the continuous choice as the nuclear
matter EOS. Indeed, this is a further indication of con-
vergence. The phenomenological saturation point for sym-
metric nuclear matter is, however, not reproduced, which
confirms the finding in [8]. The binding energy per par-
ticle at the minimum of the saturation curve turns out
to be close to the empirical value of about -16 MeV, but
the corresponding density comes out about 20-30 % larger
than the empirical one. The discrepancy can be accounted
for by introducing three-body forces and relativistic ef-

fects. The latter, if treated within the Dirac-Brueckner
scheme, can be cosidered as a special case of three-body
forces [11]. The possibility of extracting thrre-body forces,
consistently with the two-body forces, has been considered
both within the meson-nucleon theory of nuclear forces
[12,13] and within the chiral perturbation theory [14]. A
simpler method is to adopt a phenomenological form of
three-body forces [15], and this is the scheme used in the
calculations presented in the next Section.

3 Neutron stars and the onset
of quark matter

The nuclear matter equation of state is the fundamental
input for building models of neutron stars. These com-
pact objects, among the densest in the universe, are in-
deed characterized by values of the baryon density which
ranges from the iron density at the surface up to eight-ten
times normal nuclear matter density in the core. There-
fore a detailed knowledge of the equation of state over a
wide range of densities is required [16]. As we have seen
in the previous section, the EOS of nucleon matter can
be established up to densities relevant to neutron star
studies. At increasing densities an additional complication
arises. In fact, whereas at densities close to the saturation
value the matter consists mainly of nucleons and leptons,
at higher densities several species of particles may appear
due to the fast rise of the nucleon chemical potentials. The
Brueckner-Hartree-Fock scheme must be then generalized
to include a possible fractions of hyperons, like Λ and
Σ−. An additional uncertainity comes from our limited
knowledge of the nucleon-hyperon (NY) interaction, which
we describe within the Nijmegen soft-core model [17]. No
hyperon-hyperon interaction was taken into account, since
no robust experimental data are available yet. For more
details, the reader is referred to [18,19] and references
therein. In Fig. 4 we show the chemical composition of
β-stable and asymmetric nuclear matter containing hy-
perons (panel (a)) and the corresponding equation of state
(panel (b)). The shown calculations have been performed
using the Paris potential. We observe that hyperon for-
mation starts at densities ρ � 2 − 3 times normal nu-
clear matter density. The Σ− baryon appears earlier than
the Λ, in spite of its larger mass, because of the negative
charge. The appearance of strange particles has two main
consequences, i) an almost equal percentage of nucleons
and hyperons are present at highest densities and ii) a
strong deleptonization of matter, since it is energetically
convenient to maintain charge neutrality through hyperon
formation than β-decay. The equation of state is displayed
in panel (b). The dotted line represents the case when only
nucleons and leptons are present in stellar matter, whereas
the solid line shows the case when hyperons are included
as well. In the latter case the equation of state gets very
soft, since the kinetic energy of the already present bary-
onic species is converted into masses of the new particles,
thus lowering the total pressure.

The relation of NS mass with the matter EoS is ap-
parent in the Tolman-Oppenheimer-Volkoff (TOV) [16],
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Fig. 4. In panel a we display the equilibrium composition of
asymmetric and β-stable nuclear matter containing Σ− and
Λ hyperons. In panel b the solid (dotted) line represents the
EoS obtained in the case when nucleons plus hyperons (only
nucleons) are present

which determines the hydrostatic equilibrium configura-
tion of the star (assumed to be spherically symmetric).
The mass distribution is obtained by solving the TOV
equations for the pressure P (r) and for the mass m(r)
enclosed inside the sphere of radius r,

dP (r)
dr = −Gm(r)ε(r)

r2

[1+P (r)/ε(r)][1+4πr3P (r)/m(r)]
1−2Gm(r)/r

dm(r)
dr = 4πr2ε(r)

(9)

being G the gravitational constant and ε the energy den-
sity. The EoS establishes a relation between pressure and
energy density, making this set of two coupled equations
closed. Therfore, starting with a central mass density
ε(r = 0) ≡ εc, one integrates out until the pressure on
the surface equals the one corresponding to the density of
iron. This gives the stellar radius R and the correspond-
ing gravitational mass M . It has to be noticed that the
NS mass which is observable is the gravitational mass,
given by

MG ≡ m(R) = 4π

∫ R

0
dr r2ε(r) (10)

For the description of the NS crust, if present, one usu-
ally joins the hadronic equations of state with the ones
by Negele and Vautherin [20] in the medium-density
regime, and the ones by Feynman-Metropolis-Teller [21]
and Baym-Pethick-Sutherland [22] for the outer crust.

However, the formation of a large fraction of strange
matter at high density, and therefore in the interior of NS,
can be only a hypothetical scenario, since another pro-
cess can compete : the onset of a deconfined quark matter
phase at large enough baryon density. This possibility has
been considered recently by several authors, within spe-
cific models for the quark phase, and we will review briefly
their findings.

The simplest quark matter model, widely used in
model calculations, is the MIT bag model [23]. The model
contains mainly two parameters, the bag constant B and
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and various parametrizations of the bag constant as a function
of density. The solid lines indicate the resukts for the pure
hadronic EoS discussed in the text

the strange quark mass ms, besides the strong coupling
constant αS which describes possible perturbative cor-
rections. A systematic study of NS structure, as the pa-
rameters are varied, has been presented in [24]. In this
work, no strange matter is considered in the hadronic sec-
tor, whose EoS is described either within the relativistic
mean field or within the non-relativistic many-body model
of [25]. In the quark sector, the possibility of color super-
conductivity (CS) [26,27] is also considered (for a review
on CS see [28].) Despite the presence of strong color su-
perconductivity (gap ∆ ∼ 100 MeV) can enhance appre-
ciably the NS maximum mass, one of the main conclu-
sions of this systematic study is that the NS mass can-
not exceed values of about 1.6–1.7 solar mass. A larger
value of the mass would require values of the bag constant
so small to make symmetric nuclear matter unstable to-
wards deconfinement even at saturation density. This re-
sults appears in agreement with our previous work [29,
30], where also the MIT bag model was used (without
color superconductivity), in conjunction with the above
discussed hadron EoS, which includes strangeness. With-
out the quark phase, our EoS would produce a maximum
mass below the observational limit of 1.44 solar mass [31].
Mixed phase, along the general method of [32], was also in-
cluded. The bag constant was allowed to vary with density,
in order to tune the value of the baryon energy density εB

at which deconfinement occurs in symmetric nuclear mat-
ter. If this value is restricted in a “reasonable interval”
, i.e. 0.8 < εB < 1.5 GeV fm−3, the resulting maximum
mass depends only weakly on εB , and it does not exceed
1.7 solar mass. These findings are summarized in Figs. 5,
6, and 7

It has to be noticed that for the largest masses, as in
[24] the NS is mainly composed of pure quark matter (hy-
brid star). This can be seen in Fig. 8, where QP indicates
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pure quark phase, MP the mixed phase and HP the pure
hadronic phase. Comparison is also made with a similar
calculation where a relativistic mean field (RMF) EoS is
used for the hadronic phase (including hyperons) [33,34].
According to [24], a strong color superconductivity can
even render a pure quark mass possible.

A more microscopic model for the deconfined quark
phase, which has some direct links with hadron phe-
nomenology, is the Nambu-Jona Lasinio (NJL) model [35].
The parameters of the model are held fixed to the ones fit-
ted to reproduce the masses of the meson octet. The NJL
model generates dynamically the quark masses as a func-
tion of baryon density, through the presence of the quark
condensate. The model has been generalized to include
also color superconductivity [36]. The latter is also dynam-
ically generated (gap equations), and therefore it does not
introduce further parameters, since the value of the pair-
ing gap is a well defined function of the baryon density.
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without color superconductivity are indicated by the bold solid
and bold dashed lines respectively. The points mark the values
of the pressure where the corresponding hadron-quark phase
transitions occur

Th resulting EoS for beta-stable neutron star matter is
reported in Fig. 9, where for the hadron sector the EoS
discussed above, see Fig. 4, is adopted.

The quark color superconductivity can actually ap-
pear in two different phase, the so-called two-flavour (2SC)
phase, where only up and down quark partecipate, and the
color-flavor locked (CFL) phase, where also the strange
quark is included in a coherent combination with the other
two quarks. The transition from the 2SC to the CFL phase
occurs at a density (or pressure) where only the confined
hadronic phase is present. The transition is responsible
of the (almost) discontinuity of the quark EoS around
p ≈ 100 MeV/fm3 in Fig. 9. Without color superconduc-
tivity, bold dashed line in Fig. 9, the EoS has, of course,
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a completely smooth behaviour. The different behaviour
with and without CS of the quark EoS is due not only
to the additional pairing energy but also to the different
density dependence of the dynamically generated quark
masses and the relative quark fractions, particularly for
the strange quark. The phase transition from hadron to
quark matter, that was assumed to be sharp for simplic-
ity, is marked by the points and the corresponding verti-
cal lines which join the different EoS. The transition from
hadronic to superconducting quark matter occurs around
p ≈ 160 MeV/fm3 (open circles), while, if the CS is ex-
cluded, the transition occur (full squares) at much higher
pressure (and density).

If strange matter is allowed also in the hadonic phase,
according to the EoS of Fig. 4, then no transition to
quark matter is possible before the NS maximum mass
is reached. As we have seen, the value of the maximum
mass is in this case too low, which means that this par-
ticular EoS is not acceptable. This result does not ex-
clude the possible appearence of hadronic matter with a
strange component (hyperons), since the adopted EoS is
strongly dependent on the particular hyperon-nucleon in-
teraction used in the microscopic calculations. The inter-
action is not so well known, especially at density above
saturation. Indeed, if one adopts the EoS of [37] (ver-
sion with K = 240 MeV), derived within the relativistic
mean field approximation, which also contains hyperon
components, the transition to quark matter (with CS) is
now possible, since this EoS is stiffer. The corresponding
value of the transition pressure is marked by the stars in
Fig. 9. This EoS differ from the previous one only in the
region of density where hyperons are present, while it is
quite similar in the pure nucleon sector. This is because
the nucleon-hyperon effective interaction is less attractive,
and therefore the hyperon content is smaller and the EoS
is stiffer.

Once the EoS for NS matter is obtained, the NS den-
sity and composition profile can be obtained. The results
for the total mass as a function of radius are summarized
in Fig. 10. As already mentioned, the EoS of Fig. 4 which
includes hyperons (dotted line) produces a too law max-
imum mass, with no possible transition to quark matter.
If hyperon are not included, within the same scheme, and
quark matter is described in the NJL model with no CS
(bold dashed line), the maximum mass is substantially en-
hanced (about 1.8 solar mass). It has to be noticed that as
soon as quark matter appears at increasing central density
(or decreasing radius) just at the center, the NS becomes
unstable toward collapse. Since we are considering a sharp
transition between the two phases (no mixed phase), the
transition produces the small kink at the maximum of
the mass vs. radius curve which is apparent in Fig. 10.
The inclusion of a mixed phase would smooth out this
behaviour and only slightly modify the value of the max-
imum mass [38]. This result means also that the use of
the NJL model for the quark phase actually does not al-
low any NS with a pure quark matter core. Possibly, only
a small portion of mixed phase at the center would be
possible.
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Fig. 10. Gravitational masses of comapct stars as a function
of the radius for the different EOS shown in Fig. 9

This conclusion holds true also when CS is introduced
in the quark phase (bold line). The effect of the CS is to re-
duce appreciably the maximum mass, which is in this case
around 1.75 solar mass. Again, the presence of a mixed
phase is expected to reduce slightly this value.

If the EoS of [37] is used, where also hyperons are
included, keeping the same EoS for the quark (i.e. NJL
with CS), the maximum mass further decreases to a value
close to 1.55 solar mass, while the radius reduces substan-
tially (by about 10%), making the object more compact.
It can be then expected that a generic hadronic EoS with
strangeness would produce a maximum mass lower than
the value without strangeness, i.e. below about 1,75 so-
lar mass. Indeed, an EoS with larger strangness content
is expected to be softer, as we have seen in the discussion
above.

4 Conclusions

We have discussed the results of NS structure calculations
based, on one hand on a hadronic EoS which has been
derived from microscopic many-body calculations, and on
the other on simplified models for the possible quark phase
in the core of the NS. The quark matter models include
the MIT bag model and the Nambu-Jona Lasinio model,
both with and without the possibility of color supercon-
ductivity. In all the calculations analysed, the maximum
mass of NS never exceed values of 1.7 - 1.8 solar mass. Fot
hybrid stars, i.e. stars which contain both hadronic and
quark components, color superconductivity tends to re-
duce slightly the maximum mass. If CS is strong enough,
even pure quark stars are possible for the MIT bag model.
However, the structure of NS in the MIT and NJL mod-
els is drastically different. While the major fraction of NS
is composed by quark matter for the MIT model, in the
case of the NJL model just the onset of quark matter in
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the core is able to make the NS unstable toward collapse.
This means that in the latter case no pure quark matter
phase could, in principle, exist in NS. This sharp difference
of structure should have some effects on different proper-
ties of NS, like cooling, glitches, magnetic and rotational
properties, neutrino physics, and so on. The possibility of
getting a clean signal from observational data on the pos-
sible presence of quark matter in NS is still one of the
main filed of research in NS physics, but, unfortunately,
is also one of the most controversial. More theoretical in-
vestigations and observational data will hopefully clarify
in the future this fundamental issue in the physics of NS
and in the physics of high density baryonic matter.

It has to be noticed, anyhow, that in all model ex-
plored so far the NS maximum mass never exceed 1.7-1.8
solar mass. Therefore, the observation of a NS with a mass
substantially larger than this value would put serious con-
straints on the EoS of quark matter at high density.
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